Toggle navigation
About
Contact
Dropdown
Action
Another action
Something else here
Nav header
Separated link
One more separated link
Trigonometry (Basic)
Home
Trigonometry (Basic)
All Questions (Page: 14)
Study Material (PDF)
All Questions (PDF)
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Bengali
Study Material (PDF)
All Questions (PDF)
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Bengali
Click on each question to see answer & solution.
Question No: #131
If `\angle A + \angle B = 90^\circ`, then show that, `1 + tan A/tan B = sec^2 A`.
Ans:
SEE SOLUTION
Question No: #132
If `A + B = 90^\circ`, then show that, `tan A + tan B = \frac{\text{cosec}^2 B}{\sqrt{\text{cosec}^2 B - 1}}`.
Ans:
SEE SOLUTION
Question No: #133
If the angles `\alpha` and `\beta` are complimentary to each other, then prove that, `cot \beta + cos \beta = \frac{cos \beta}{cos \alpha} (1 + sin \beta)`.
Ans:
SEE SOLUTION
Question No: #134
If `\angle P + \angle Q = 90^\circ`, then show that, `\sqrt{\frac{sin P}{cos Q} - sin P cos Q} = cos P`.
Ans:
SEE SOLUTION
Question No: #135
If the angles `\alpha` and `\beta` are complimentary to each other, then show that, `sin \alpha = \sqrt{\frac{cos \alpha}{sin \beta} - cos \alpha sin \beta}`.
Ans:
SEE SOLUTION
Question No: #136
If `A + B = 90^\circ`, then show that, `\sqrt{\frac{tan A tan B + tan A cot B}{sin A sec B} - \frac{sin^2 B}{cos^2 A}} = tan A`.
Ans:
SEE SOLUTION
Question No: #137
If `\alpha + \beta = \pi/2`, then prove that, `\frac{sec \alpha + sin \beta}{sin \alpha} = tan \alpha + 2 tan \beta`.
Ans:
SEE SOLUTION
Question No: #138
If the angles `A` and `B` are complimentary to each other, then prove that, `(sin A + sin B)^2 = 1 + 2 sin A cos A`.
Ans:
SEE SOLUTION
Question No: #139
If `\alpha + \beta = 90^\circ`, then show that, `sec^2 \alpha + sec^2 \beta = sec^2 \alpha \cdot sec^2 \beta`.
Ans:
SEE SOLUTION
Question No: #140
If `sin (A+B) = 1` and `cos(A-B) = 1`, where `0^\circ le (A+B) \le 90^\circ`, then find the value of `A` and `B`.
Ans: `A = B = 45^\circ`
SEE SOLUTION
Previous Page: 13
Next Page: 15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15