Toggle navigation
About
Contact
Dropdown
Action
Another action
Something else here
Nav header
Separated link
One more separated link
Matrix
Home
Matrix
All Questions (Page: 9)
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Click on each question to see answer & solution.
Question No: #81
If $ A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \end{pmatrix} $ then find `A\A^{-1}`
Ans:
SEE SOLUTION
Question No: #82
If $ A = \begin{bmatrix} k & 2 \\ 2 & k \end{bmatrix} $ and `|A^3|=125`, then find value of `k`.
Ans:
SEE SOLUTION
Question No: #83
Find the matrices `A` and `B` such that, $ A+2B = \begin{pmatrix} 1 & 2 & 0 \\ 6 & -3 & 3 \\ -5 & 3 & 1 \end{pmatrix} $ and $ 2A - B = \begin{pmatrix} 2 & -1 & 5 \\ 2 & -1 & 6 \\ 0 & 1 & 2 \end{pmatrix} $
Ans:
SEE SOLUTION
Question No: #84
Given $ A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} $ and $ B = \begin{bmatrix} 2 & x & x \\ x & 4 & 5 \\ x & 6 & 7 \end{bmatrix} $. Then find the value of `x` (if possible) such that `AB = BA`
Ans: `x=0`
SEE SOLUTION
Question No: #85
If $ A = \begin{pmatrix} 0 & 2b & c \\ a & b & -c \\ a & -b & c \end{pmatrix} $ and `A^TA=I`, then find the value of `a, b, c`
Ans: `a = \pm \frac{1}{\sqrt{2}}, b = \pm \frac{1}{\sqrt{6}}, c = \pm \frac{1}{\sqrt{3}}`
SEE SOLUTION
Question No: #86
If $ A = \begin{bmatrix} 1 & -2 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} $ and $ B = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 3 & -1 \\ 0 & -1 & -2 \end{bmatrix} $, then show that the matrix `(A^TB)A` is a diagonal matrix.
Ans: N.A.
SEE SOLUTION
Question No: #87
Show that the matrix $ A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix} $ is an idempotent matrix.
Ans: N.A.
SEE SOLUTION
Question No: #88
Show that the matrix $ \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix} $ is a Nilpotent matrix of index 3.
Ans: N.A.
SEE SOLUTION
Question No: #89
If $ A = \begin{bmatrix} 1 & x & -2 \\ 2 & 2 & 4 \\ 0 & 0 & 2 \end{bmatrix} $ and `A^2+2I_3=3A`, then find the value of `x`. Here `I_3` is the unit matrix of order 3.
Ans:
SEE SOLUTION
Question No: #90
If $ P = \begin{bmatrix} -1 & 3 & 5 \\ 1 & -3 & -5 \\ -1 & 3 & -5 \end{bmatrix} $ then show that `P^2 = P` and then find a matrix `Q` such that `3P^2-2P+Q = I`.
Ans: $ \begin{bmatrix} 2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4 \end{bmatrix} $
SEE SOLUTION
Previous Page: 8
Next Page: 10
1
2
3
4
5
6
7
8
9
10
11
12
13