Toggle navigation
About
Contact
Dropdown
Action
Another action
Something else here
Nav header
Separated link
One more separated link
Matrix
Home
Matrix
All Questions (Page: 7)
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Click on each question to see answer & solution.
Question No: #61
If $ A = \begin{pmatrix} -2 & 1 & 3 \\ 0 & 4 & -1 \end{pmatrix} $ and $ B = \begin{pmatrix} 2 & 1 \\ -3 & 0 \\ 4 & -5 \end{pmatrix} $, then prove that `(AB)^T = B^TA^T`
Ans:
SEE SOLUTION
Question No: #62
If $ A = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix} $ and $ B = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} $ then find `AB` and `BA`
Ans:
SEE SOLUTION
Question No: #63
Express the following matrix (`A`) as the sum of symmetric & skew-symmetric matrix. $ A = \begin{bmatrix} -3 & 4 & 1 \\ 2 & 3 & 0 \\ 1 & 4 & 5 \end{bmatrix}$
Ans: $ \begin{bmatrix} -3 & 3 & 1 \\ 3 & 3 & 2 \\ 1 & 2 & 5 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & -2 \\ 0 & 2 & 0 \end{bmatrix}$
SEE SOLUTION
Question No: #64
Express the following matrix (`A`) as the sum of symmetric & skew-symmetric matrix. $ A = \begin{bmatrix} 2 & 3 & 4 \\ 5 & 7 & 9 \\ -2 & 1 & 1 \end{bmatrix}$
Ans:
SEE SOLUTION
Question No: #65
If $ A = \begin{bmatrix} 1 & x \\ x^2 & 4y \end{bmatrix} $, $ B = \begin{bmatrix} -3 & 1 \\ 1 & 0 \end{bmatrix} $ and $ adj(A) + B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} $ then find the value of `x` and `y`.
Ans:
SEE SOLUTION
Question No: #66
If $ A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$ then show that `A^2-5A-2I_2=O` where $ I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $ O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Hence find `A^{-1}`
Ans: $ A^{-1} = \frac{1}{2} \begin{pmatrix} -4 & 3 \\ 2 & -1 \end{pmatrix}$
SEE SOLUTION
Question No: #67
If $ A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} $ and `a`, `b` are two real numbers such that `A^2+aA+bI=O` (where `I` & `O` are unit & zero matrix), then find `A^{-1}`
Ans: $ A^{-1} = \begin{bmatrix} 7 & 2 \\ 1 & 5 \end{bmatrix} $
SEE SOLUTION
Question No: #68
If $ A = \begin{pmatrix} 2x & 0 \\ x & x \end{pmatrix} $ and $ A^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix} $, then find the value of `x`
Ans:
SEE SOLUTION
Question No: #69
If $ A = \begin{pmatrix} 2 & -3 \\ -4 & 7 \end{pmatrix} $ and `2A^{-1}=kI-A` where `I` is unit matrix. Find the value of `k`.
Ans:
SEE SOLUTION
Question No: #70
If $A= \begin{bmatrix} 4 & 5 \\ 2 & 1 \end{bmatrix}$ then show that `6A^{-1}+5I=A`
Ans: N.A.
SEE SOLUTION
Previous Page: 6
Next Page: 8
1
2
3
4
5
6
7
8
9
10
11
12
13