Toggle navigation
About
Contact
Dropdown
Action
Another action
Something else here
Nav header
Separated link
One more separated link
Matrix
Home
Matrix
All Questions (Page: 6)
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Click on each question to see answer & solution.
Question No: #51
If `A`, `B`, `C` are 3 given matrices such that $ A = \begin{pmatrix} 3 & 5 \\ 2 & a \end{pmatrix}$, $ B = \begin{pmatrix} 4 & b \\ 2 & 9 \end{pmatrix}$ and $ C = \begin{pmatrix} 22 & 14 \\ a & -1 \end{pmatrix}$, find `a` and `b` such that `A\cdot\B = C^T`.
Ans:
SEE SOLUTION
Question No: #52
Find `A^100` if $ A = \begin{pmatrix} \omega & 0 \\ 0 & \omega \end{pmatrix} $ , where `\omega` is the imaginary cube root of 1.
Ans: `A`
SEE SOLUTION
Question No: #53
If $ A = \begin{pmatrix} i & - i \\ - i & i \end{pmatrix} $ and $ B = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} $ then show that `A^8=128\ B`
Ans:
SEE SOLUTION
Question No: #54
If $ A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} $ and `n in mathbb{N}`, then show that `A^n=2^{n-1}A`
Ans: N.A.
SEE SOLUTION
Question No: #55
If $ A = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} $, then show that $ A^n = \begin{pmatrix} 1+2n & -4n \\ n & 1-2n \end{pmatrix} $ where `n \in \mathbb{N}`
Ans: N.A.
SEE SOLUTION
Question No: #56
If $ A = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{bmatrix} $, then find the matrix `A^50`
Ans: $ \begin{bmatrix} 1 & 0 \\ 25 & 1 \end{bmatrix} $
SEE SOLUTION
Question No: #57
If $ A = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} $ then prove that `A^2-2A+I_2=0`. Hence find the matrix `A^50`
Ans: $ \begin{bmatrix} 1 & 0 \\ -50 & 1 \end{bmatrix} $
SEE SOLUTION
Question No: #58
If $ A = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} $ then find `A\A^T`
Ans:
SEE SOLUTION
Question No: #59
If $ A = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} $ then find `A\A^T`
Ans:
SEE SOLUTION
Question No: #60
If $ P = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 3 & 1 \end{pmatrix} $ and `Q = PP^T`, then find the matrix `Q`
Ans:
SEE SOLUTION
Previous Page: 5
Next Page: 7
1
2
3
4
5
6
7
8
9
10
11
12
13