Toggle navigation
About
Contact
Dropdown
Action
Another action
Something else here
Nav header
Separated link
One more separated link
Matrix
Home
Matrix
All Questions (Page: 5)
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Click on each question to see answer & solution.
Question No: #41
If $ A = \begin{pmatrix} 3 & 1 \\ 7 & 5 \end{pmatrix} $ and `A^2=-xI+yA` (where `I` is the identity matrix). Then find the value of `x` and `y`.
Ans:
SEE SOLUTION
Question No: #42
If $ A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} $, $ B = \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix} $ and `(A+B)^2 = A^2+B^2`, then find the value of `a` and `b`.
Ans: `a=1, b=4`
SEE SOLUTION
Question No: #43
If $A=\begin{pmatrix} 2 & -1 \\ 3 & 2 \end{pmatrix}$ and $B=\begin{pmatrix} 0 & 4 \\ -1 & 7 \end{pmatrix}$ then find the matrix `3A^2-2B+I`
Ans:
SEE SOLUTION
Question No: #44
If $ A = \begin{pmatrix} 4 & 2 \\ -1 & 1 \end{pmatrix} $ and $ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $ then prove that `(A-2I)(A-3I)=`$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
Ans:
SEE SOLUTION
Question No: #45
If $ A = \begin{bmatrix} 4 & 2i \\ i & 1 \end{bmatrix} $ then show that `(A-2I)(A-3I) = O` where `O` & `I` are zero & unit matrices. `i=\sqrt{-1}`
Ans:
SEE SOLUTION
Question No: #46
If $ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} $ and $ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $ , then prove that `A^2 - (a+d)A = (bc-ad)I`
Ans:
SEE SOLUTION
Question No: #47
If $ A = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix} $ and $ B = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} $ and `A^2=B`, then find the value of `\alpha` (if possible). Give reason for your answer.
Ans:
SEE SOLUTION
Question No: #48
If `\alpha` and `\beta` are two roots of the equation `x^2+x+1=0` then find the matrix `A` such that $ A = \begin{bmatrix} 1 & \beta \\ \alpha & \alpha \end{bmatrix} \times \begin{bmatrix} \alpha & \beta \\ 1 & \beta \end{bmatrix} $
Ans:
SEE SOLUTION
Question No: #49
If $ \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} $ then find the value of `x` and `y`.
Ans:
SEE SOLUTION
Question No: #50
If $ A = \begin{bmatrix} 3 & -1 \\ 1 & 2 \end{bmatrix} $, $ B = \begin{bmatrix} 3 \\ 1 \end{bmatrix} $, $ C = \begin{bmatrix} 1 \\ -2 \end{bmatrix} $ and `AX=3B+2C`, then find the matrix `X`
Ans: $ X = \begin{bmatrix} 3 \\ -2 \end{bmatrix} $
SEE SOLUTION
Previous Page: 4
Next Page: 6
1
2
3
4
5
6
7
8
9
10
11
12
13