Toggle navigation
About
Contact
Dropdown
Action
Another action
Something else here
Nav header
Separated link
One more separated link
Matrix
Home
Matrix
All Questions (Page: 2)
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Click on each question to see answer & solution.
Question No: #11
If `A` & `B` be two symmetric matrices, then the matrix `AB` will be symmetric if - (a) `AB=O` (b) `AB=BA` (c) `|AB|=0` (d) None of these.
Ans: (b) `AB=BA`
SEE SOLUTION
Question No: #12
If `A` & `B` both are symmetric matrices, then the matrix `ABA` is -- (a) symmetric (b) skew-symmetric (c) diagonal (d) none of these
Ans: (a) symmetric
SEE SOLUTION
Question No: #13
If a matrix `A` is both symmetric & skew-symmetric, then `A` should be -- (a) diagonal matrix, (b) zero matrix, (c) square matrix, (d) none of these.
Ans: (b) zero matrix
SEE SOLUTION
Question No: #14
If the matrices `A`, `B` are such that `AB=A` and `BA=B`. Then `B^2` is -- (a) `B`, (b) `A`, (c) `I`, (d) `O`
Ans: (a) `B`
SEE SOLUTION
Question No: #15
If the matrix `A` is proper orthogonal, then value of `|A|` is -- (a) 0, (b) 1, (c) 2, (d) 3
Ans: (b) 1
SEE SOLUTION
Question No: #16
If `\omega` is the imaginary cube root of 1 and $ A = \begin{pmatrix} 1 & 0 \\ 0 & \omega \end{pmatrix} $, $ B = \begin{pmatrix} \omega & 0 \\ 0 & 1 \end{pmatrix} $, then `(A+B)^47` is -- (a) `-I_2`, (b) `\omega\I_2`, (c) `-\omega^2I_2`, (d) `-\omega\I_2`
Ans: (d) `-\omega\I_2`
SEE SOLUTION
Question No: #17
If $ A = \begin{pmatrix} 1 & 2 & x \\ 4 & -1 & 7 \\ 2 & 4 & -6 \end{pmatrix} $ is a singular matrix, then value of `x` is -- (a) `0`, (b) `1`, (c) `3`, (d) `-3`
Ans: (d) `-3`
SEE SOLUTION
Question No: #18
`A` and `B` are two matrices such that `A\cdotB=O` (where `O` is zero matrix). Can we deduce that either `A` or `B` is a zero matrix? Illustrate by an example.
Ans: `A` or `B` may not be zero matrix
SEE SOLUTION
Question No: #19
`A` is a matrix of order `2\times\m` and `B` is a matrix of order `3\times\n` . If `A\cdot\B` is defined and its order is `p\times\4`, then find the value of `m, n, p`.
Ans: m=3, n=4, p=2
SEE SOLUTION
Question No: #20
For any two square matrices `A` & `B`, when the matrix equation `A^2-B^2 = (A+B)(A-B)` holds true?
Ans: when `AB = BA`
SEE SOLUTION
Previous Page: 1
Next Page: 3
1
2
3
4
5
6
7
8
9
10
11
12
13