Toggle navigation
About
Contact
Dropdown
Action
Another action
Something else here
Nav header
Separated link
One more separated link
Matrix
Home
Matrix
All Questions (Page: 12)
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Click on each question to see answer & solution.
Question No: #111
If $ A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & -1 \\ -1 & 1 & -7 \end{bmatrix}$ find `A^{-1}`. Hence solve the following equations. `x+y-z=3`, `2x+3y+z=10`, `3x-y-7z=1`
Ans:
SEE SOLUTION
Question No: #112
From the matrix equation `AX=B` find the matrix `X`, given that $ A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix} $ and $ B = \begin{bmatrix} 2 \\ 1 \\ 7 \end{bmatrix}$
Ans:
SEE SOLUTION
Question No: #113
Find the matrix `A` where $ \begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{bmatrix} A = \begin{bmatrix} -1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15 \end{bmatrix} $
Ans:
SEE SOLUTION
Question No: #114
Solve by using inverse matrix method. `x+2y+z=7`, `x+3z=11`, `2x-y=1`
Ans:
SEE SOLUTION
Question No: #115
Solve by using inverse matrix method. `2x+3y+5z=5`, `x-2y+z=-4`, `3x-y-2z=3`
Ans:
SEE SOLUTION
Question No: #116
Solve by using inverse matrix method. `2/x-3/y+3/z=10`, `1/x+1/y+1/z=10`, `3/x-1/y+2/z=13`
Ans:
SEE SOLUTION
Question No: #117
By using the matrix method, show that the following set of equations have an infinite number of solutions. `x+2y+3z=1`, `3x+4y+5z=2`, `5x+6y+7z=3`
Ans:
SEE SOLUTION
Question No: #118
Given $ A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix} $ and $ B = \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix} $. Find `AB`. Hence from this result, solve the following set of equations. `x-y+z=4`, `x-2y-2z=9`, `2x+y+3z=1`
Ans: `x=3, y=-2, z=-1`
SEE SOLUTION
Question No: #119
Find the inverse of the following matrix by using elementary row transformations. $ \begin{pmatrix} 3 & 0 & -1 \\ 2 & 3 & 0 \\ 0 & 4 & 1 \end{pmatrix} $
Ans:
SEE SOLUTION
Question No: #120
Find the inverse of the following matrix by using Elementary row operations. $ \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \end{bmatrix} $
Ans:
SEE SOLUTION
Previous Page: 11
Next Page: 13
1
2
3
4
5
6
7
8
9
10
11
12
13