Toggle navigation
About
Contact
Dropdown
Action
Another action
Something else here
Nav header
Separated link
One more separated link
Matrix
Home
Matrix
All Questions (Page: 11)
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Click on each question to see answer & solution.
Question No: #101
If $ A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} $ and `f(x) = x^3-6x^2+7x+2`, then show that `A` is a root of `f(x)=0`
Ans: N.A.
SEE SOLUTION
Question No: #102
Show that the matrix $ P = \frac{1}{3}\begin{pmatrix} -1 & 2 & -2 \\ -2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$ is proper orthogonal, and hence find `P^{-1}`
Ans: `P^{-1} = P^T` $ = \frac{1}{3}\begin{pmatrix} -1 & -2 & 2 \\ 2 & 1 & 2 \\ -2 & 2 & 1 \end{pmatrix}$
SEE SOLUTION
Question No: #103
Show that the matrix $ \begin{pmatrix} 3 & 2 & 1 \\ 0 & 4 & 5 \\ 3 & 6 & 6 \end{pmatrix} $ is non-singular.
Ans:
SEE SOLUTION
Question No: #104
If `|A|=2` and $ Adj(A) = \begin{bmatrix} -2 & 3 & 1 \\ 6 & -8 & -2 \\ -4 & 7 & 2 \end{bmatrix} $ then find the matrix `A`
Ans:
SEE SOLUTION
Question No: #105
If $ A = \begin{bmatrix} 1 & 0 & 2 \\ 3 & 4 & -1 \\ 0 & 5 & 6 \end{bmatrix} $ then show that `(A^T)^{-1} = (A^{-1})^T`.
Ans:
SEE SOLUTION
Question No: #106
If $ A =\frac{1}{9} \begin{bmatrix} -8 & 1 & 4 \\ 4 & 4 & 7 \\ 1 & -8 & 4 \end{bmatrix} $ , then show that `A^{-1} = A^T`.
Ans:
SEE SOLUTION
Question No: #107
If $ A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix} $ then show that `A^2 = A^{-1}`. Hence find `A^3`
Ans:
SEE SOLUTION
Question No: #108
If $ A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix} $ then verify the relation `A\cdot(adj\ A) = |A|\cdot I`. Hence find `A^{-1}`
Ans:
SEE SOLUTION
Question No: #109
If $ A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$ then find `A^{-1}` and also show that `A\A^{-1} = A^{-1}A = I`
Ans:
SEE SOLUTION
Question No: #110
If $ A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix} $ then find `A^{-1}`. Hence solve the following equations. `2x-3y+5z=11`, `3x+2y-4z=-5`, `x+y-2z=-3`
Ans:
SEE SOLUTION
Previous Page: 10
Next Page: 12
1
2
3
4
5
6
7
8
9
10
11
12
13