Toggle navigation
About
Contact
Dropdown
Action
Another action
Something else here
Nav header
Separated link
One more separated link
Matrix
Home
Matrix
All Questions (Page: 10)
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Click on each question to see answer & solution.
Question No: #91
Show that matrix $A=\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ satisfies the equation `A^2-4A-5I_3=O`. Hence find `A^{-1}`
Ans:
SEE SOLUTION
Question No: #92
If $ f(x) = \begin{bmatrix} cos\ x & - sin\ x & 0 \\ sin\ x & cos\ x & 0 \\ 0 & 0 & 1 \end{bmatrix} $, then prove that `f(\alpha)\cdot\f(\beta) = f(\alpha+\beta)`.
Ans:
SEE SOLUTION
Question No: #93
If $ A = \begin{bmatrix} 0 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 0 \end{bmatrix} $ and `I` is the identity matrix of order 2, then show that `(I+A) = (I-A)`$ \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix} $ (or) `(I+A)(I-A)^{-1] = `$ \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix} $
Ans: N.A.
SEE SOLUTION
Question No: #94
If `\alpha - \beta = (2n+1)\frac{\pi}{2}` where `n in \mathbb{Z}` then show that product of $ \begin{pmatrix} \cos^2\alpha & \cos\alpha\sin\alpha \\ \cos\alpha\sin\alpha & \sin^2\alpha \end{pmatrix} $ and $ \begin{pmatrix} \cos^2\beta& \cos\beta\sin\beta \\ \cos\beta\sin\beta & \sin^2\beta \end{pmatrix} $ is a zero matrix.
Ans: N.A.
SEE SOLUTION
Question No: #95
If $ A = \begin{bmatrix} 1 & -\tan \frac{\theta}{2} \\ \tan \frac{\theta}{2} & 1 \end{bmatrix} $ and $ B = \begin{bmatrix} 1 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 1 \end{bmatrix} $ then prove that `AB^{-1} = `$ \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} $
Ans:
SEE SOLUTION
Question No: #96
If $ A = \begin{pmatrix} 1 & \tan\ x \\ -\tan\ x & 1 \end{pmatrix} $ then show that $ A^T \cdot A^{-1} = \begin{pmatrix} \cos2x & -\sin2x \\ \sin2x & \cos2x \end{pmatrix} $
Ans:
SEE SOLUTION
Question No: #97
If a matrix $ A = \begin{pmatrix} 6 & 2 & -2 \\ -2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix} $, then show that `(A-2I)(A-4I) = 0` matrix and hence find `A^3`
Ans: $ \begin{pmatrix} 120 & 56 & -56 \\ -56 & 8 & 56 \\ 56 & 56 & 8 \end{pmatrix} $
SEE SOLUTION
Question No: #98
Find the value of $ \begin{pmatrix} x & y & z \end{pmatrix} \times \begin{pmatrix} a & h & g \\ h & b & f \\ g & f & c \end{pmatrix} \times \begin{pmatrix} x \\ y \\ z \end{pmatrix} $
Ans:
SEE SOLUTION
Question No: #99
Find the value of `p` such that $ \begin{bmatrix} 1 & p & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix} \times \begin{bmatrix} 1 \\ 2 \\ p \end{bmatrix} = 0 $
Ans: -2, -14
SEE SOLUTION
Question No: #100
If `f(x) = x^2-5x+6` then find `f(A)` where $ A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix} $
Ans: $ \begin{bmatrix} 1 & -1 & -3 \\ -1 & -1 & -10 \\ -5 & 4 & 4 \end{bmatrix} $
SEE SOLUTION
Previous Page: 9
Next Page: 11
1
2
3
4
5
6
7
8
9
10
11
12
13