Toggle navigation
About
Contact
Dropdown
Action
Another action
Something else here
Nav header
Separated link
One more separated link
Function or Mapping
Home
Function or Mapping
All Questions (Page: 2)
Study Material (PDF)
All Questions (PDF)
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Study Material (PDF)
All Questions (PDF)
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Click on each question to see answer & solution.
Question No: #11
Let `f : \mathbb{R} \rarr \mathbb{R}` be a mapping defined by `f(x) = x^3+x`. Prove that `f` is a bijective mapping.
Ans:
SEE SOLUTION
Question No: #12
Let the function `f : \mathbb{R} \rarr \mathbb{R}` be defined by `f(x)=x^3-6`, for all `x \in \mathbb{R}`. Show that `f` is bijective. Also find a formula that defines `f^{-1}(x)`
Ans:
SEE SOLUTION
Question No: #13
Let `f : \mathbb{R} \to \mathbb{R}` be a mapping, defined by `f(x) = x + |x|`, where `x \in \mathbb{R}`. Show that `f` is neither one-one nor onto.
Ans:
SEE SOLUTION
Question No: #14
Let `f : (-1,1) \rarr \mathbb{R}` be a mapping defined by `f(x) = \frac{x}{1-|x|}`. Show that `f^{-1}` exists. Hence find `f^{-1}`.
Ans:
SEE SOLUTION
Question No: #15
Two mappings `f : \mathbb{R} \rarr \mathbb{R}` and `g : \mathbb{R} \rarr \mathbb{R}` are defined by `f(x) = x^2+1` and `g(x) = 3x-2` respectively. Then find the value of `(g \circ f)(-1)`.
Ans:
SEE SOLUTION
Question No: #16
A mapping `f : \mathbb{R} \to \mathbb{R}` defined by $ f(x) = \begin{cases} x, & \text{when } x \in \mathbb{Q} \\ 1-x, & \text{when } x \notin \mathbb{Q} \end{cases}$, where `\mathbb{Q}` is the set of rational number. Show that `f \circ f = I_{\mathbb{R}}`
Ans:
SEE SOLUTION
Question No: #17
Let `\mathbb{R}` be a set of all real numbers and `f : \mathbb{R} \rarr \mathbb{R}` is a mapping defined by `f(x) = 2x+1`. If `(g \circ f)(x)=10x+10`, then find the mapping `g : \mathbb{R} \rarr \mathbb{R}`
Ans:
SEE SOLUTION
Question No: #18
If `f(x)=x^2`, `g(x)=\tanx` and `h(x)=\logx`, then value of `(h \circ (g \circ f))(\sqrt{\frac{\pi}{4}})` is -- (a) `0`, (b) `1`, (c) `\frac{1}{\pi}`, (d) `1/2\log\frac{\pi}{4}`
Ans:
SEE SOLUTION
Question No: #19
Let `\mathbb{R}` be the set of all real numbers and for all `x \in \mathbb{R}`, the mapping `f : \mathbb{R} -> \mathbb{R}` is defined by `f(x)=ax+2`. If `(f \circ f)=I_{\mathbb{R}}`, then find the value of `a`
Ans:
SEE SOLUTION
Previous Page: 1
1
2