Toggle navigation
About
Contact
Dropdown
Action
Another action
Something else here
Nav header
Separated link
One more separated link
Determinant
Home
Determinant
All Questions (Page: 9)
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Click on each question to see answer & solution.
Question No: #81
Prove that: $ \begin{vmatrix} a & a+b & a+b+c \\ 2a & 3a+2b & 4a+3b+2c \\ 3a & 6a+3b & 10a+6b+3c \end{vmatrix} = a^3 $
Ans:
SEE SOLUTION
Question No: #82
Prove that: $ \begin{vmatrix} x^2+y^2+1 & x^2+2y^2+3 & x^2+3y^2+4 \\ y^2+2 & 2y^2+6 & 3y^2+8 \\ y^2+1 & 2y^2+3 & 3y^2+4 \end{vmatrix} = x^2y^2 $
Ans:
SEE SOLUTION
Question No: #83
Prove without expanding. $ \begin{vmatrix} \cos(x-\alpha) & \cos(x+\alpha) & cosx \\ \sin(x+\alpha) & \sin(x-\alpha) & sinx \\ \cos\alpha\ tanx & \cos\alpha\ cotx & \csc\ 2x \end{vmatrix} = 0 $
Ans:
SEE SOLUTION
Question No: #84
Prove that: $ \begin{vmatrix} \cos(x+y) & \sin(x+y) & -\cos(x+y) \\ \sin(x-y) & \cos(x-y) & \sin(x-y) \\ \sin2x & 0 & \sin2y \end{vmatrix} = \sin2(x+y) $
Ans:
SEE SOLUTION
Question No: #85
Prove that $ \begin{vmatrix} 2\cos\theta & 1 & 0 \\ 1 & 2\cos\theta & 1 \\ 0 & 1 & 2\cos\theta \end{vmatrix} = $`\frac{\sin4\theta}{\sin\theta}` [$ \theta \ne n\pi$]
Ans:
SEE SOLUTION
Question No: #86
If $ \Delta = \begin{vmatrix} 1 & \sin\theta & 1 \\ -\sin\theta & 1 & \sin\theta \\ 1 & -\sin\theta & 1 \end{vmatrix} $ then show that `2 \le \Delta \le 4`
Ans:
SEE SOLUTION
Question No: #87
Show that $ \begin{vmatrix} 1 & 1 & 1 \\ \sin\alpha & \sin\beta & \sin\gamma \\ \cos\alpha & \cos\beta & \cos\gamma \end{vmatrix} = $`-4sin\frac{\alpha-\beta}{2}sin\frac{\beta-\gamma}{2}sin\frac{\gamma-\alpha}{2}`
Ans:
SEE SOLUTION
Question No: #88
Show that $ \begin{vmatrix} \sin^2A & sinA & \cos^2A \\ \sin^2B & sinB & \cos^2B \\ \sin^2C & sinC & \cos^2C \end{vmatrix} $`= (sinA-sinB)(sinB-sinC)(sinA-sinC)`
Ans:
SEE SOLUTION
Question No: #89
If `A, B, C` are three angles of a triangle, then prove that $ \begin{vmatrix} -1 & \cos\ C & \cos\ B \\ \cos\ C & -1 & \cos\ A \\ \cos\ B & \cos\ A & -1 \end{vmatrix} = 0 $
Ans:
SEE SOLUTION
Question No: #90
If `A, B, C` are three angles of a triangle, then prove that $ \begin{vmatrix} \sin\ (A+B+C) & \sin\ (A+C) & \cos\ C \\ -\sin\ B & 0 & \tan\ A \\ \cos\ (A+B) & \tan\ (B+C) & 0 \end{vmatrix} = 0 $
Ans:
SEE SOLUTION
Previous Page: 8
Next Page: 10
1
2
3
4
5
6
7
8
9
10
11
12
13
14