Toggle navigation
About
Contact
Dropdown
Action
Another action
Something else here
Nav header
Separated link
One more separated link
Determinant
Home
Determinant
All Questions (Page: 12)
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Click on each question to see answer & solution.
Question No: #111
Prove that $ \begin{vmatrix} 3a & -a+b & -a+c \\ -b+a & 3b & -b+c \\ -c+a & -c+b & 3c \end{vmatrix} = 3(a+b+c)(ab+bc+ca) $
Ans:
SEE SOLUTION
Question No: #112
Prove that: $ \begin{vmatrix} a & b-c & c+b \\ a+c & b & c-a \\ a-b & b+a & c \end{vmatrix} = (a+b+c)(a^2+b^2+c^2) $
Ans:
SEE SOLUTION
Question No: #113
Prove that $ \begin{vmatrix} 1 & b+c & b^2+c^2 \\ 1 & c+a & c^2+a^2 \\ 1 & a+b & a^2+b^2 \end{vmatrix} = (a-b) (b-c) (c-a) $
Ans:
SEE SOLUTION
Question No: #114
Prove that: $ \begin{vmatrix} 1 & b+c & c^2 \\ 1 & c+a & a^2 \\ 1 & a+b & b^2 \end{vmatrix} = (a-b)(b-c)(c-a) $
Ans:
SEE SOLUTION
Question No: #115
Prove that $ \begin{vmatrix} -1 & b & c \\ a & -1 & c \\ a & b & -1 \end{vmatrix} = (a+1)(b+1)(c+1)(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}-1) $
Ans:
SEE SOLUTION
Question No: #116
Prove that $ \begin{vmatrix} 1+x & 1 & 1 \\ 1 & 1+y & 1 \\ 1 & 1 & 1+z \end{vmatrix} = xy+yz+zx+xyz = xyz\ (1+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}) $
Ans:
SEE SOLUTION
Question No: #117
Without expanding prove that: $ \begin{vmatrix} x & b & c \\ a & y & c \\ a & b & z \end{vmatrix} $`=(x-a)(y-b)(z-c)(\frac{x}{x-a}+\frac{y}{y-b}+\frac{z}{z-c}-2)`
Ans:
SEE SOLUTION
Question No: #118
If `a\ne\p`, `b\ne\q`, `c\ne\r` and $ \begin{vmatrix} p & b & c \\ a & q & c \\ a & b & r \end{vmatrix} = 0 $, then show that `\frac{p}{p-a}+\frac{q}{q-b}+\frac{r}{r-c}=2`.
Ans:
SEE SOLUTION
Question No: #119
If $ \begin{vmatrix} p & q-y & r-z \\ p-x & q & r-z \\ p-x & q-y & r \end{vmatrix} = 0 $ , then show that `p/x+q/y+r/z = 2`
Ans:
SEE SOLUTION
Question No: #120
Prove that $ \begin{vmatrix} \frac{a^2+b^2}{c} & c & c \\ a & \frac{b^2+c^2}{a} & a \\ b & b & \frac{c^2+a^2}{b} \end{vmatrix} = 4abc $
Ans:
SEE SOLUTION
Previous Page: 11
Next Page: 13
1
2
3
4
5
6
7
8
9
10
11
12
13
14