Toggle navigation
About
Contact
Dropdown
Action
Another action
Something else here
Nav header
Separated link
One more separated link
Determinant
Home
Determinant
All Questions (Page: 11)
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Click on each question to see answer & solution.
Question No: #101
Show that $ \begin{vmatrix} -a(b^2+c^2-a^2) & 2b^3 & 2c^3 \\ 2a^3 & -b(c^2+a^2-b^2) & 2c^3 \\ 2a^3 & 2b^3 & -c(a^2+b^2-c^2) \end{vmatrix} = abc(a^2+b^2+c^2)^3 $
Ans:
SEE SOLUTION
Question No: #102
Prove that $ \begin{vmatrix} a+b+2c & a & b \\ c & b+c+2a & b \\ c & a & c+a+2b \end{vmatrix} = 2\ (a+b+c)^3 $
Ans:
SEE SOLUTION
Question No: #103
Prove that $ \begin{vmatrix} 2a & a-b-c & 2a \\ 2b & 2b & b-c-a \\ c-a-b & 2c & 2c \end{vmatrix} = (a+b+c)^3 $
Ans:
SEE SOLUTION
Question No: #104
Prove that $ \begin{vmatrix} -2a & a+b & a+c \\ b+a & -2b & b+c \\ c+a & c+b & -2c \end{vmatrix} = 4(a+b)(b+c)(c+a) $
Ans:
SEE SOLUTION
Question No: #105
Prove that $ \begin{vmatrix} a+b+c & -c & -b \\ -c & a+b+c & -a \\ -b & -a & a+b+c \end{vmatrix} = 2\ (a+b)\ (b+c)\ (c+a) $
Ans:
SEE SOLUTION
Question No: #106
Prove (without expanding). $ \begin{vmatrix} (b+c)^2 & a^2 & a^2 \\ b^2 & (c+a)^2 & b^2 \\ c^2 & c^2 & (a+b)^2 \end{vmatrix} = 2abc\ (a+b+c)^3 $
Ans:
SEE SOLUTION
Question No: #107
Without expanding, prove that: $ \begin{vmatrix} (a+b)^2 & ac & bc \\ ac & (b+c)^2 & ab \\ bc & ab & (c+a)^2 \end{vmatrix} = 2abc(a+b+c)^3 $
Ans:
SEE SOLUTION
Question No: #108
If `a^2+b^2+c^2=0` and $ \begin{vmatrix} b^2+c^2 & ab & ac \\ ab & c^2+a^2 & bc \\ ca & bc & a^2+b^2 \end{vmatrix} = ka^2b^2c^2 $, then find the value of `k`.
Ans:
SEE SOLUTION
Question No: #109
If `2s=a+b+c` then prove that $ \begin{vmatrix} a^2 & (s-a)^2 & (s-a)^2 \\ (s-b)^2 & b^2 & (s-b)^2 \\ (s-c)^2 & (s-c)^2 & c^2 \end{vmatrix} = 2s^3(s-a)(s-b)(s-c) $
Ans:
SEE SOLUTION
Question No: #110
Prove that $ \begin{vmatrix} a & b-c & c+b \\ a+c & b & c-a \\ a-b & b+a & c \end{vmatrix} = (a+b+c) (a^2+b^2+c^2)$
Ans:
SEE SOLUTION
Previous Page: 10
Next Page: 12
1
2
3
4
5
6
7
8
9
10
11
12
13
14