Toggle navigation
About
Contact
Dropdown
Action
Another action
Something else here
Nav header
Separated link
One more separated link
Derivative (2nd order)
Home
Derivative (2nd order)
All Questions (Page: 2)
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Click on each question to see answer & solution.
Question No: #11
If `y=e^{\frac{1}{x}}`, then find `\frac{d^2y}{dx^2}`
Ans:
SEE SOLUTION
Question No: #12
If `F(x)=f(x)\cdot\phi(x)` and `f'(x)\cdot\phi\'(x)=a` where `a` constant, then prove that `\frac{F''}{F}=\frac{f''}{f}+\frac{\phi\''}{\phi}+\frac{2a}{f\phi}`
Ans:
SEE SOLUTION
Question No: #13
If `x=f(t)` and `y=g(t)` then show that `\frac{d^2y}{dx^2}=\frac{x_1y_2-y_1x_2}{x_1^3}`
Ans:
SEE SOLUTION
Question No: #14
If `x\sin\theta+y\cos\theta=a` and `x\cos\theta-y\sin\theta=b`, then show that value of `\frac{dx}{d\theta}\cdot\frac{d^2y}{d\theta^2}-\frac{d^2x}{d\theta^2}\cdot\frac{dy}{d\theta}` is constant.
Ans: N.A.
SEE SOLUTION
Question No: #15
If `x=t^2+2t`, `y=t^3-3t` then show that `\frac{d^2y}{dx^2}=\frac{3}{4(t+1)}`
Ans:
SEE SOLUTION
Question No: #16
If `x=cost`, `y=logt` then show that `\frac{d^2y}{dx^2}+(\frac{dy}{dx})^2=0` at `t=\frac{\pi}{2}`
Ans:
SEE SOLUTION
Question No: #17
If `x=a\cos\2t`, `y=a\sin\2t` then find the value of `\frac{d^2y}{dx^2}` in form of `t`
Ans:
SEE SOLUTION
Question No: #18
If `x=sint`, `y=sin\kt` then show that `(1-x^2)\frac{d^2y}{dx^2}-x\frac{dy}{dx}+k^2y=0` where `k` is a constant
Ans: N.A.
SEE SOLUTION
Question No: #19
If `x=tant` and `y=tanpt`, then show that `(1+x^2)\frac{d^2y}{dx^2}+2(x-py)\frac{dy}{dx}=0`
Ans:
SEE SOLUTION
Question No: #20
If `x=e^tsint` and `y=e^tcost` then show that `(x+y)^2\frac{d^2y}{dx^2}=2(x\frac{dy}{dx}-y)`
Ans: N.A.
SEE SOLUTION
Previous Page: 1
Next Page: 3
1
2
3
4
5
6
7
8