Toggle navigation
About
Contact
Dropdown
Action
Another action
Something else here
Nav header
Separated link
One more separated link
Derivative (1st order)
Home
Derivative (1st order)
All Questions (Page: 13)
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Click on each question to see answer & solution.
Question No: #121
If `y=tan^{-1}\frac{1}{1+x+x^2}+tan^{-1}\frac{1}{3+3x+x^2}+cot^{-1](7+5x+x^2)` then show that `(\frac{dy}{dx})_{x=0}=-\frac{9}{16}`
Ans:
SEE SOLUTION
Question No: #122
If `y=tan^{-1]\frac{1}{1+x+x^2}+tan^{-1]\frac{1}{x^2+3x+3}+tan^{-1]\frac{1}{x^2+5x+7}+\ \cdots` upto `n` terms, then find the value of `\frac{dy}{dx}`
Ans:
SEE SOLUTION
Question No: #123
If `y=tan^{-1}\frac{3x}{1+4x^2}+tan^{-1}\frac{2+5x}{5-2x}`, then show that `\frac{dy}{dx}=\frac{4}{1+16x^2}`
Ans:
SEE SOLUTION
Question No: #124
If `y=tan^{-1}\frac{4x}{1+5x^2}+tan^{-1}\frac{2+3x}{3-2x}` then show that `\frac{dy}{dx}=\frac{5}{1+25x^2}`
Ans:
SEE SOLUTION
Question No: #125
If `y=sin(cos^{-1}x)+\frac{1}{2}sin^{-1}\frac{2x}{1+x^2}`, then show that `\frac{dy}{dx}+\frac{1}{\sqrt{1-x^2}}=\frac{1}{1+x^2}`
Ans:
SEE SOLUTION
Question No: #126
If `y=tan^{-1}[\frac{\sqrt{1+t^2}+\sqrt{1-t^2}}{\sqrt{1+t^2}-\sqrt{1-t^2}}]` then find the value of `\frac{dy}{dt}`
Ans:
SEE SOLUTION
Question No: #127
If `y=tan^{-1}[\frac{\sqrt{1+x^2}-\sqrt{1-x^2}}{\sqrt{1+x^2}+\sqrt{1-x^2}}]` then show that `\frac{dy}{dx}=\frac{x}{\sqrt{1-x^4}}`
Ans:
SEE SOLUTION
Question No: #128
If `y=cot^{-1}[\frac{\sqrt{1+x^2}-\sqrt{1-x^2}}{\sqrt{1+x^2}+\sqrt{1-x^2}}]` then find the value of `\frac{dy}{dx}`
Ans:
SEE SOLUTION
Question No: #129
If `y=cot^{-1}[\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}]`, then show that value of `\frac{dy}{dx}` at `x=\frac{1}{2}` is `-\frac{1}{\sqrt{3}}`.
Ans:
SEE SOLUTION
Question No: #130
if `y=tan^{-1}(\frac{\sqrt{1+sinx}-\sqrt{1-sinx}}{\sqrt{1+sinx}+\sqrt{1-sinx}})` where `0\lt\x\lt\frac{\pi}{2}`, then find the value of `\frac{dy}{dx}`
Ans:
SEE SOLUTION
Previous Page: 12
Next Page: 14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15