Toggle navigation
About
Contact
Dropdown
Action
Another action
Something else here
Nav header
Separated link
One more separated link
Quadratic Surd
Home
Quadratic Surd
All Questions (Page: 2)
Study Material (PDF)
All Questions (PDF)
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Bengali
Study Material (PDF)
All Questions (PDF)
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Bengali
Click on each question to see answer & solution.
Question No: #11
If `x = \sqrt{7+4\sqrt{3}}`, then the value of `(x - 1/x)` is .......
Ans: `2\sqrt{3}`
SEE SOLUTION
Question No: #12
(i) Show that `(7+\sqrt{2})` is a conjugate surd of mixed quadratic surd `(7-\sqrt{2})`,
(ii) Show that `-5 + \sqrt{2}` is not a conjugate surd of the mixed quadratic surd `5 + \sqrt{2}`.
Ans:
SEE SOLUTION
Question No: #13
Prove that, `(\sqrt{7} - \sqrt{3}) \lt (\sqrt{5} - 1)`.
Ans:
SEE SOLUTION
Question No: #14
If `x = \sqrt{3} + \sqrt{2}`, then show that, `x^2 + 1/x^2 = 10`.
Ans:
SEE SOLUTION
Question No: #15
If `2x = \sqrt{5}+1`, then show that, `x^2-x-1=0`
Ans:
SEE SOLUTION
Question No: #16
If `x + 1/x = \sqrt{3}`, then find the value of `x^54 + x^42 + x^36 + x^12 + x^6 - 1`
Ans: `-2`
SEE SOLUTION
Question No: #17
Find the simplest value of:
(i) `\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}`
(ii) `\frac{4\sqrt{3}}{2-\sqrt{2}} - \frac{30}{4\sqrt{3}-\sqrt{18}} - \frac{\sqrt{18}}{3-2\sqrt{3}}`
(iii) `\frac{x+\sqrt{x^2-1}}{x-\sqrt{x^2 - 1}} + \frac{x-\sqrt{x^2 - 1}}{x+\sqrt{x^2-1}}`
(iv) `\frac{3\sqrt{7}}{\sqrt{2}+\sqrt{5}} - \frac{5\sqrt{5}}{\sqrt{2}+\sqrt{7}} + \frac{\sqrt{2}}{\sqrt{5}+\sqrt{7}}`
Ans: (i) `2/3`, (ii) `4\sqrt{6}`, (iii) `2(2x^2-1)`, (iv) `0`
SEE SOLUTION
Question No: #18
If `x + \sqrt{x^2-9} = 9`, then find the value of `x - \sqrt{x^2-9}`
Ans: 1
SEE SOLUTION
Question No: #19
If `x = 2 + \sqrt{3}` and `x+y=4`, then find the simplest value of `xy + 1/{xy}`
Ans: 2
SEE SOLUTION
Question No: #20
If `x = \frac{\sqrt{3}+1}{\sqrt{3}-1}` and `y = \frac{\sqrt{3}-1}{\sqrt{3}+1}`, then show that, `\frac{x^2+y^2}{x^2-y^2} = \frac{7\sqrt{3}}{12}`.
Ans:
SEE SOLUTION
Previous Page: 1
Next Page: 3
1
2
3