Toggle navigation
About
Contact
Dropdown
Action
Another action
Something else here
Nav header
Separated link
One more separated link
Matrix
Home
Matrix
All Questions (Page: 1)
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Click on each question to see answer & solution.
Question No: #1
If `A = [a_{ij}]` is a matrix of order `2\times\2` where `a_{ij} = i+2j` then find the matrix `A`.
Ans: $ A= \begin{bmatrix} 3 & 5 \\ 4 & 6 \end{bmatrix} $
SEE SOLUTION
Question No: #2
If `A = [a_{ij}]` is a matrix of order `2\times\2` where `a_{ij} = \frac{(i+j)^2}{2}`, then find the matrix `A`.
Ans: $ \begin{pmatrix} 2 & 9/2 \\ 9/2 & 8 \end{pmatrix} $
SEE SOLUTION
Question No: #3
If `A = (a_{ij})_{n\times\n}` is a square matrix where `a_{ij} = i^2-j^2`, then matrix `A` is -- (a) zero matrix, (b) unit matrix, (c) symmetric matrix, (d) skew-symmetric matrix
Ans: (d) skew-symmetric matrix
SEE SOLUTION
Question No: #4
If $ A = \begin{pmatrix} 3x & x-1 \\ 2x+3 & x+2 \end{pmatrix} $ is a symmetric matrix, then find the value of `x`.
Ans: `-4`
SEE SOLUTION
Question No: #5
If $ A = \begin{bmatrix} 0 & x & 7 \\ -2 & z & 3 \\ y & w & 0 \end{bmatrix} $ is a skew-symmetric matrix,then find the value of `x, y, z`
Ans: `x=2, y=-7, z=0`
SEE SOLUTION
Question No: #6
Show that `A-A^T` is a skew-symmetric matrix where $A=\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$
Ans: N.A.
SEE SOLUTION
Question No: #7
If $ A = \begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{pmatrix} $ then show that `A+A^T` is a symmetric matrix.
Ans: N.A.
SEE SOLUTION
Question No: #8
If $ A = \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix} $ then `A^TA` is equal to - (a) `A` (b) `-A` (c) `I` (d) `-I`
Ans: (d) `-I`
SEE SOLUTION
Question No: #9
If `A` is a square matrix, then `A\A^T + A^TA` is -- (a) unit matrix (b) zero matrix (c) symmetric matrix (d) skew-symmetric matrix
Ans: (c) symmetric matrix
SEE SOLUTION
Question No: #10
If `A` be a square matrix, then which of the following is false: (a) `(A^T)^T = A`, (b) `A+A^T` is symmetric, (c) `A-A^T` is skew-symmetric, (d) `(AB)^T = B^T\cdotA^T`
Ans: All options are correct
SEE SOLUTION
Next Page: 2
1
2
3
4
5
6
7
8
9
10
11
12
13