Toggle navigation
About
Contact
Dropdown
Action
Another action
Something else here
Nav header
Separated link
One more separated link
Determinant
Home
Determinant
All Questions (Page: 1)
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Click on each question to see answer & solution.
Question No: #1
If $ A = \begin{bmatrix} 11 & 20 \\ 31 & 41 \end{bmatrix} $ and `|3A|=k|A|`, then find the value of `k`, where `|A|` is determinant of matrix `A`.
Ans:
SEE SOLUTION
Question No: #2
Let `A` be a square matrix of order `n\times\n`, and `k` is a scalar, then `|kA|` is equal to -- (a) `k|A|` (b) `nk|A|` (c) `n^k|A|` (d) `k^n|A|`
Ans:
SEE SOLUTION
Question No: #3
Find co-factor of `-4` and `9` in determinant $ \begin{vmatrix} -1 & -2 & 3 \\ -4 & -5 & -6 \\ -7 & 8 & 9 \end{vmatrix} $
Ans:
SEE SOLUTION
Question No: #4
If $ \begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -i \\ 20 & 3 & i \end{vmatrix} = x+iy $, then find the values of `x` & `y` where `i=\sqrt{-1}`
Ans:
SEE SOLUTION
Question No: #5
Value of the determinant $ \begin{vmatrix} 2^{10} & 2^{11} & 2^{12} \\ 2^{11} & 2^{12} & 2^{13} \\ 2^{12} & 2^{13} & 2^{14} \end{vmatrix} $ is -- (a) `2^10` (b) `0` (c) `1` (d) None of these.
Ans:
SEE SOLUTION
Question No: #6
Find the value of $ \begin{vmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{vmatrix} $
Ans:
SEE SOLUTION
Question No: #7
If `A` is a skew-symmetric matrix of odd order, then value of `|A|` is -- (a) `1` (b) `-1` (c) `0` (d) any real number.
Ans:
SEE SOLUTION
Question No: #8
If `A` is an invertible matrix of order `2`, then the value of `\det(A^{-1})` is -- (a) `0` (b) `1` (c) `\det A` (d) `\frac{1}{\det A}`
Ans:
SEE SOLUTION
Question No: #9
If $ A = \begin{bmatrix} x & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & x \end{bmatrix} $ then the value of `|A|\cdot|adj(A)|` is -- (a) `x^9` (b) `x^6` (c) `x^3` (d) `x`
Ans:
SEE SOLUTION
Question No: #10
`A` be a `3\times\3` matrix. If `A^{-1}` exists and `|A|=6`, then the value of `|Adj(A)|` is -- (a) 1 (b) 6 (c) 12 (d) 36
Ans:
SEE SOLUTION
Next Page: 2
1
2
3
4
5
6
7
8
9
10
11
12
13
14