Toggle navigation
About
Contact
Dropdown
Action
Another action
Something else here
Nav header
Separated link
One more separated link
Complex Number
Home
Complex Number
All Questions (Page: 9)
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Click on each question to see answer & solution.
Question No: #81
Find the roots of the equation `(x+5)^3 + 27=0`
Ans:
SEE SOLUTION
Question No: #82
Let `\omega` be the imaginary cube root of 1. If `x=a+b`, `y=a\omega + b\omega^2`, `z = a\omega^2+b\omega`, then show that --
i) `xyz = a^3 + b^3`
ii) `x^3 + y^3 + z^3 = 3(a^3 + b^3)`
iii) `x^2 + y^2 + z^2 = 6ab`
Ans:
SEE SOLUTION
Question No: #83
Let `\omega` be the imaginary cube root of 1. If `x = \alpha + \beta`, `y = \alpha + \beta\omega`, `z = \alpha + \beta\omega^2` , then show that `x^3 + y^3 + z^3 = 3(\alpha^3 + \beta^3)`
Ans:
SEE SOLUTION
Question No: #84
Let `\omega` be the imaginary cube root of 1 and `a+b+c=0`. Then show that `(a+b\omega+c\omega^2)^3 + (a+b\omega^2+c\omega)^3 = 27abc`
Ans:
SEE SOLUTION
Previous Page: 8
1
2
3
4
5
6
7
8
9