Toggle navigation
About
Contact
Dropdown
Action
Another action
Something else here
Nav header
Separated link
One more separated link
Complex Number
Home
Complex Number
All Questions (Page: 8)
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Click on each question to see answer & solution.
Question No: #71
If `z = x+iy` (where `x,y \in \mathbb{R}`) and `|\frac{z-3}{z+3}|=2`, then find the locus of `z` in complex plane.
Ans:
SEE SOLUTION
Question No: #72
If `z = x+iy` and `\frac{z-i}{z-1}=ia` (where `x,y,a` are real), then show that `(x-1/2)^2+(y-1/2)^2 = (1/\sqrt{2})^2`
Ans:
SEE SOLUTION
Question No: #73
If `z = x+iy` (`x,y \in \mathbb{R}`) and `\frac{z+1}{z+i}` is purely imaginary, then show that locus of `z` is a circle with centre at `-1/2(1+i)` and radius `1/\sqrt{2}`
Ans:
SEE SOLUTION
Question No: #74
If `z=x+iy` and `|z-2-i|=5`, then show that locus of `z` in complex plane is a circle. Also find its centre & radius.
Ans:
SEE SOLUTION
Question No: #75
If `z = x+iy` then find the numerical value of area of circle determined by `z \bar{z} + (3-4i)z + (3+4i)\bar{z}=0`
Ans:
SEE SOLUTION
Question No: #76
If `a,b,c` real number, `z` complex number and `a^2+b^2+c^2=1`, `b+ic = z(1+a)` then show that `\frac{a+ib}{1+c} = \frac{1+iz}{1-iz}`
Ans:
SEE SOLUTION
Question No: #77
Find the value of --
i) `(1-\omega) (1-\omega^2) (1-\omega^4)(1-\omega^5)`
ii) `(1-\omega^2) (1-\omega^4) (1-\omega^8) (1-\omega^10)`
iii) `(3 + \omega + 3\omega^2)^4`
iv) `1 + \omega^28 + \omega^29`
v) `\omega^4 + \omega^8 + \omega^{-1}\cdot\omega^{-2}`
vi) `\omega^{3n} + \omega^{3n+1} + \omega^{3n+2}` where `n \in \mathbb{N}`
vii) `(\frac{-1+\sqrt{-3}}{2})^19 + (\frac{-1 - \sqrt{-3}}{2})^19`
viii) `(x + y\omega + z\omega^2)^2 + (x\omega + y\omega^2 + z)^2 + (x\omega^2 + y + z\omega)^2`
ix) `1\cdot(2-\omega)\cdot(2-\omega^2) + 2\cdot(3-\omega)\cdot(3-\omega^2)+ \cdots + (n-1)\cdot(n-\omega)\cdot(n-\omega^2)`
Ans:
SEE SOLUTION
Question No: #78
Find the value of `\alpha^4 + \beta^4 + \alpha^{-1} \beta^{-1}` where `\alpha`, `\beta` are imaginary cube root of 1.
Ans:
SEE SOLUTION
Question No: #79
Show that the value of `(a+\omega+\omega^2)(a + \omega^2 + \omega^4)(a + \omega^4 + \omega^8) \cdots` upto `2n` number of factors is `(a-1)^{2n}`
Ans:
SEE SOLUTION
Question No: #80
Show that `\omega/9 [(1-\omega)(1-\omega^2)(1-\omega^4)(1-\omega^8) + 9(\frac{c+a\omega+b\omega^2}{a\omega^2+b+c\omega})] = -1`
Ans:
SEE SOLUTION
Previous Page: 7
Next Page: 9
1
2
3
4
5
6
7
8
9