Toggle navigation
About
Contact
Dropdown
Action
Another action
Something else here
Nav header
Separated link
One more separated link
Complex Number
Home
Complex Number
All Questions (Page: 5)
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Study Material (PDF)
All Questions (PDF)
English Version
Self Assesment
Sort As
Serial Number
Newly Added
Language
English
Click on each question to see answer & solution.
Question No: #41
Find the fourth root of `7-24i`
Ans: `\pm 1/sqrt{2}(3-i)`, `\pm 1/sqrt{2}(1+3i)`
SEE SOLUTION
Question No: #42
Show that one of the values of `\sqrt{i} + \sqrt{-i}` is `\sqrt{2}`
Ans:
SEE SOLUTION
Question No: #43
Show that one of the values of `\sqrt{1+i} - \sqrt{1-i}` is `i\sqrt{2(\sqrt{2}-1)}`
Ans: N.A.
SEE SOLUTION
Question No: #44
If `y = \sqrt{x^2+6x+8}` where `x \gt 0`, then show that one of the values of `\sqrt{1+iy} + \sqrt{1-iy}` is `\sqrt{2x+8}`
Ans:
SEE SOLUTION
Question No: #45
i) If `z = x+iy` where `x,y \in \mathbb{R}` and `i=\sqrt{-1}` and `|z-2| = |2z-1|`, then prove that `x^2+y^2 = 1`
ii) If `z = x+iy` where `x,y \in \mathbb{R}` and `i=\sqrt{-1}` and `|z+6| = |2z+3|`, then prove that `x^2+y^2 = 9`
Ans:
SEE SOLUTION
Question No: #46
If `z = x+iy` (`x,y \in \mathbb{R}`) and `i=\sqrt{-1}` and `|2z+1| = |z-2i|` then show that `3(x^2+y^2)+4(x+y)=3`
Ans: N.A.
SEE SOLUTION
Question No: #47
If `z = 3+2i` and `\frac{2z-1}{z-2} = x+iy` (where `x, y` are real), then find the value of `x, y`.
Ans: `x=13/5`, `y= - 6/5`
SEE SOLUTION
Question No: #48
If `a, b, c, d, x, y` are real number and `(a+ib)(c+i``d) = (x+iy)`, then show that `(ac-bd)^2+(ad+bc)^2 = x^2+y^2`
Ans:
SEE SOLUTION
Question No: #49
If `a^2+b^2=1` (where `a,b \in \mathbb{R}`), then show that a real value of `x` satisfies the equation `\frac{1-ix}{1+ix}=a-ib`
Ans:
SEE SOLUTION
Question No: #50
If a complex number `z` is such that `\frac{z-1}{z+1}` is purely imaginary, then show that `|z| = 1`
Ans: N.A.
SEE SOLUTION
Previous Page: 4
Next Page: 6
1
2
3
4
5
6
7
8
9