If `\alpha`, `\beta` are imaginary roots of `x^3-1=0`, then show that $ \begin{vmatrix} \lambda+1 & \alpha & \beta \\ \alpha & \lambda+\beta & 1 \\ \beta & 1 & \lambda+\alpha \end{vmatrix} = \lambda^3 $

Answer of this question will be added soon.

Share it on